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Of interest is the determination of the shape of thick axisymmetric bodies having a 
small surface area for a given volume, and simultaneously, a sufficiently high value of the 
critical I~ch number for a small pressure drop on the body surface which would permit realiza- 
tion of unseparated flow. 

As is known [i], for given length and volume of an axisymmetric body the maximal value 
of the critical Mach number is achieved when the body consists of two disks connected by a 
surface on which the velocity is everywhere sonic. An analog of this flow in an incompres- 
sible fluid is the Ryabouchinsky flow for a disk. However, it is extremely difficult to 
assure unseparated flow around such a body because of the high value of the pressure drop 
on its surface. 

As Chaplygin [2] has shown for the plane flow case, any stagnation point on a body sur- 
face be replaced by a finite domain with fluid at rest adjacent to the body. Flows of this 
kind for a cylinder and sphere were first obtained in [3]. As all flows with free boundaries, 
such flows possess a number of extremal properties. Let us note some of them. Let the poten- 
tial flow around a plane body that is symmetric relative to the x axis, or an axisymmetric 
body with axis of symmetry x, be considered. A homogeneous stream, directed along this axis, 
exists at infinity. Let the curve L be a fixed part of the body contour in the upper half- 
plane, and L, the variable part of the body contour connecting the point M, on the axis of 
symmetry x and the point M on the contour L. In the axisymmetric case L and L, are sections 
of the fixed and variable body surface in the meridian plane. It is shown in [4] that for a 
given location of the point M sufficiently close to the axis of symmetry, the maximal value 
of the square of the velocity on the variable part of the body L, reaches a minimum if and 
only if the velocity on L, is constant everywhere, i.e., when L, is a free streamline. The 
proof of this result is based on utilization of the maximum principle for the stream functions 
of plane and axisymmetric flows. It can analogously be shown that such flows have still an- 
other extremal property: For a given location of the point M, on the axis of symmetry x, the 
minimal value of the square of the velocity on the variable part of the body L, reaches a 
maximum if and only if the curve L, is a free streamline. The magnitude of the velocity on 
L, is related uniquely to the position of the point M,. 

Therefore, by applying Ryabouchinsky flow at the stagnation points of a domain with 
constant pressure, we achieve a maximal diminution in the pressure drop on the surface for a 
fixed increase in the length of the body obtained by such means. The idea of constructing 
such bodies is due to Taganov. A family of flows of such type is obtained in this paper for 
the incompressible fluid case. To diminish the pressure gradients on the body surface, 
spheres are used as reference bodies instead of disks. For given body length and volume this 
results in a certain increase in the maximal value of the perturbed flow velocity. Taking 
account of compressibility of the fluid will result only in a quantitative refinement of the 
results obtained in this paper. 

Let us consider the axisymmetric flow around a body of shape unknown in advance D which 
is symmetric relative to the plane x =0 in an x, r coordinate system (Fig. i). On the for- 
ward section of the body AB the velocity is constant and equal to vl, the section BC is a 
part of the surface of a sphere, and the velocity is also constant, and equal to v2, on the 
middle part CC' of the body. A potential stream homogeneous at infinity, and directed along 
the x axis, flows around the body. The flow velocity at infinity and the radii of the sphere 
are taken equal to one. In addition to the velocities vl and v2, the problem contains the 
following parameters: Z, is the distance between the body nose and the center of the nearest 
sphere, ~z is the distance between the centers of the spheres, and ul and u2 are angular 
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locations of the points B and C. We determine the location of the point C (the parameter ~2) 
from the condition that the velocity gradient vanish upon approaching the point C along the 
sphere surface. It is known from the theory of an ideal fluid jet [51 that this condition 
is equivalent to the condition of "smooth separation" of Brillouin--Will: The curvature of 
a surface with a constant value of the velocity agrees with the curvature of the body at the 
separation point. Analysis of the known solutions for jet flows shows that the problem 
should have a two-parameter family of solutions. The results of a numerical solution confirm 
this assumption. 

~le problem is formulated as follows: For given values of the parameters l~ and l= 
determine the parameters vl, v2, a~, a2, the shape of the surfaces AB and CC' and the Stokes 
stream function ~, satisfying the differential equation ~xx +~rr -- Or/r =0, resulting from 
the condition that the flow is potential, and the following boundary conditions: ~ =0 on 
the whole body surface, Iv~I/r =v~ on AB and A'B', Iv~I/r =v2 on CC', and Iv~I/r § as 
X 2 +r 2 §  

Considering the body surface as a vortical surface with unknown intensity, the stream 
function can be represented in the form I6] 

~ ( r ) =  ~ b 4n ~ , ( r ' ) Q ( r , r ' ) d l ,  (1)  
e 

L 

w h e r e  

Q(r,  r ' )  := p[(2 - k~)K -- 2El ;  p = [(x - -  x ' ) '  -I- (r 4- ,")2IV~; 

k = ( 4 r r ' ) l / 2 / p  i s  t h e  m o d u l u s  o f  t h e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  and  s e c o n d  
k i n d s  K and  E, r = ( x ,  r ) ,  r '  = ( x ' ,  r ' )  a r e  p o i n t s  on t h e  b o d y  s u r f a c e  w i t h  r e s p e c t  t o  w h i c h  
t h e  i n t e g r a t i o n  i s  p e r f o r m e d ,  L i s  t h e  c u r v e  A B C C ' B ' A ' ,  1 i s  t h e  l e n g t h  o f  an  a r c  o f  t h e  
c u r v e  L,  y i s  t h e  i n t e n s i t y  o f  t h e  v o r t e x  l a y e r  on t h e  b o d y  s u r f a c e .  On t h e  s u r f a c e s  AB and 
A ' B '  we h a v e  X = - - v l ,  w h i l e  u = - - v 2  on  C C ' ,  and  y =m(1) on t h e  s t r e a m l i n e d  s u r f a c e  o f  t h e  
s p h e r e  BC and B'C'. 

~le function m should satisfy the following boundary conditions 16]: 

o)(/J) : --~:j, (0(C) -= - - c . .  0J| (C) = 0. (2)  

The m a g n i t u d e  o f  t h e  s t r e a m  v e l o c i t y  a t  t h e  p o i n t  A i s  v l ;  h e n c e ,  t h e  c o n d i t i o n  17] 

~z 

, I A  i (." i" o)"1 "~'= 

should be satisfied at this point, where a =l~ +12/2, and (x, r) is a point on the bodv sur- 

face. 

From the condition that the stream function (i) vanish on the body surface, we obtain 
an integral equation to determine the function m, the unknown body surface shape, and the 
parameters v~, v2, and a~. Conditions (2) and (3) should be satisfied here. The parameter 
a2 is determined from t h e  "smooth separation" condition. 

The method for the numerical solution of the problem is a development of the method 
used in 161 to compute Ryabouchinsky flow. 

Taking account of the infinite velocity gr;~dient on the sphere surface at the point B 
and the last condition in (2), we represent the intensity of the vortex layer on the section 
BC in the form 

N 

' "  \~ c,, ,,os,~ (n - -  2) l, 0 ~ / - ~ - . I .  , o  (0 -: c ,  ( l  - -  r , _  - I . = ' )  :- 
H 2 
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Fig. 2 Fig. 3 

For a given body shape and given values of the parameters ZI, Za, and a2, we obtain a 
system of linear equations in the parameters v,, va and ci (i =I, ..., N) from the condition 
that ~ie stream function (I) vanish at N points on the streamlined part of the sphere surface, 
the first two conditions in (2), and the relationship (3). The parameter al is nonlinear in 
these equations. After having solved the system of equations obtained, iteration is per- 
formed for the shape of the boundary on which the velocity should be constant. The shape of 
the body surface on the section CC' was given in the form of a cubic spline in the variable 
x. To take account of the infinite curvature of the body contour at the points A and B, the 
radius of the section of the initial portion of the body AB was given by a cubic spline in 
the argument t, and the coordinate x was determined by the relationship 

x ( t )  = ( t  - -  cos  x t ) ( l  1 - -  cos  r - -  l~ - -  l J 2 ,  0 ~< t ~< I .  

Iterations for the body radius at the spline nodes were performed as follows: 

rk2 ~I/~ 
r~+~ rk ~(~h)(i+ ~s . rk~ 

Here r k is the radius of the body section at the spline node for the preceding approximation, 
rk+* is the succeeding approximation for r k, v e =vl on the initial section of the body AB, 
v e =v2 on the middle section CC'. The convergence of this iteration process turned out to 
be considerably better than that applied in [6]. 

After the new approximation had been obtained for the unknown body surface shape, the 
following iteration was performed: Again the condition of nonpenetration was satisfied on 
the streamlined surface of the sphere and conditions (2) and (3) were satisfied, and then 
the next approximation for the body shape was determined. 

Determination of the initial location of the beginning of the middle part of the body 
surface with the constant velocity was performed by the method of [6]. 

The computations were executed for values of the parameters 1.5~<ZI~<3 and 2~2~i0. 
The magnitudes of the remaining parameters are represented in Figs. 2 and 3. As is seen, in 
this range of variation of Z, and ~2 the parameters characterizing the middle section of the 
body with the constant velocity CC' (see Fig. I) and the sections AB and A'B', depend weakly 
on ead| other. For an unbounded increase in the length of the forward and rear section with 
constant velocity, evidently ~I +90 ~ a2 +90 ~ vl +i, v2 +i and the flow is the unperturbed 
flow around a cylinder with radius one. As ZI +I we arrive at the flow around a sphere by 
the Ryabouchlnsky scheme obtained in [6]. The results in this paper agree well with the 
results of [6] for values of the parameter va. Somewhat worse is the correspondence for the 
angular location of the beginning of the middle section with constant velocity. This is 
apparently explained by the less successful selection in this paper for the approximation 
of the free streamline surface contour on the middle section of the body in the neighborhood 
of the point of jet descent. 

Meridian sections of the three bodies obtained and the stream velocity distribution 
along their surfaces are presented in Fig. 4. The forward and rear sections of the body 
have infinite curvature at juncture points with the spherical surfaces. The velocity gradi- 
ent on the spheres becomes infinite at these points. We have a second order tangency and 

505 



0,2 ~ r---~- , I ..... ,-], i ...... 4 
f-- T ........ T ..... r---~, 

0,4 I I  ' "'-I /'[ I' I"~ t=I,5 

!LJ...--J! I i i , t  I i ~ . 3  

u ~ _ 7 _ _ ~ _ ~ .  _ / L ~ _ _ ~ - _ _ L  _i 
-6 -4 -2 0 2 4 z 

~[ ~, 
�84 

L 

0 ~\\\ 

Q L__ . . . . . . . . . .  

1 

, ,,.~ 

i 
I 
I 

i 

Fig. 4 Fig. 5 

zero velocity gradient for junctures of the middle part of the body with the surfaces of the 
spheres. 

The following notation is used in Fig. 5: v m is the maximal value of the perturbed 
stream velocity, v~ is the magnitude of the unperturbed velocity, L is the body length along 
the axis of symmetry, and V is the body volume. The shaded line corresponds to ellipsoids 
of revolution, and the solid line to the family of bodies obtained in this paper without 
taking account of the volume and length of the pointed domains with constant pressure append- 
ed to the spheres. The dash-dot line is the lower bound of the maximal values of the per- 
turbed flow velocity. It corresponds to the flow around disks according to the Ryabouchinsky 
scheme and is constructed from the results in ]6]. The bodies obtained in this pape r for 
distances between the centers of the reference spheres that exceed their diameter have maxi- 
mal values of the perturbed flow velocity that are close to the minimal possible and almost 
half that for ellipsoids of revolution. 
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